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ABSTRACT 

The decamposition of  NH4C104, NH4C104  containing KClO and NH4C104- 3' 
t r a n s i t i o n  metal  che la te  mixtures has been s tudied  under both isothermal and 

noniso themal  conditions ( i n  t h e  l a t t e r  case pressure ' up t o  1000 p s i  

addi t iona l  v a r i a b l e ) ,  

one and t h e  NH C10 

addi t ives  and environmental conditions. These r e s u l t s  were used i n  helping 

t o  determine t h e  r o l e  of the  condensed phase i n  t h e  ove ra l l  c a b u s t i o n  of  a 

c a p o s i t e  NH4C104 - f u e l  mixture. 

s i t i o n  of both catalyzed and uncatalyzed NH4C104 during t h e  combustion of a 

composite NH4C104 propel lan t .  

w a s  an 

The experimental approach was e s s e n t i a l l y  a chemical 

decomposition w a s  both accelerated and decelerated by 4 4  

Amechanism i s  suggested f o r  t h e  decompo- 

i v  
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SUMMARY 

n 

An inves t iga t ion  i n t o  t h e  mechanism of ammonium perchlora te  decomposi- 

t i o n  as r e l a t e d  t o  t h e  combustian process i n  a composite propel lant  has l e d  

t o  t h e  conclusion t h a t  condensed phase (including sur face)  reac t ions  are 

important i n  determining the rate o f  the  ove ra l l  canbustion process. 

three poss ib le  paths by which NH4C104 can decmpose only two, high temperature 

and s a l i m a t i o n ,  a r e  important i n  the combustion process of  a canposite pro- 

p e l l a n t  over t h e  pressure range from 300 - 3000 ps i .  

decomposition, even when catalyzed by t h e  inc lus ion  of E l 0  

l a t t i c e ,  does not acce lera te  t h e  canbustion process over the  pressure range 

s tud ied ,  

(a t  high heat f lux )  o r  heterogeneous ( i n  presence of c a t a l y s t s )  decomposition 

of perchlor ic  acid.  

t r a n s i t i o n  metals having two s t ab le  oxidat ion states which involve a one 

e l ec t ron  change. Generally t r a n s i t i o n  metals i n  the form of  a chelate are 

more e f f ec t ive  than  the same amount of meta l  i n  t he  form of an oxide. I n  

addi t ion  t o  catalyzing,  it appears t o  be poss ib le  t o  slow down the combustion 

rate o f  an NHhC104 canposite propellant at low pressure by means o f  ammonia 

r e l eas ing  compounds and at high pressures by bas ic  substances which form 

r e l a t i v e l y  stable salts w i t h  HC104. 

NH4C104 decmposi t ion is  t o  lower the def lagra t ion  temperature from YU 45OoC 

at 15 p s i  t o  -320’C at 500 p s i .  

has l i t t l e  further e f f e c t  on t h e  def lagrat ion temperature. 

O f  the 

The low temperature 

i n t o  t h e  NH4C104 3 

The high temperature decomposition involves e i t h e r  the homogeneous 

O f  the additives s tud ied  the  most e f f e c t i v e  c a t a l y s t s  are 

The e f f e c t  of pressure on uncatalyzed 

An addi t iona l  increase i n  pressure t o  1000 p s i  

V 
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INTRODUCTION 

This program was undertaken t o  inves t iga t e  t h e  react ions and mechanisms 

of decomposition which occur i n  the  subs t r a t e  a t  o r  below t h e  burning surface 

of perchlorate-containing propel lants  i n  order t o  determine t h e i r  contr ibut ion 

t o  t h e  overa l l  processes which are involved i n  t h e  def lagrat ion and combustion 

of s o l i d  propel lants .  

dependent paths;  (1) t o  determine which s o l i d  phase react ions contr ibute  t o  

t h e  r a t e  of t h e  ove ra l l  combustion process,  and ( 2 )  t o  determine mechanisms of  

those reactions which a f fec t  t h e  r a t e  of t h e  canbustion process. 

emphasis has been on studying t h e  change i n  proper t ies  of t h e  oxidizer ,  

ammonium perchlorate  (AP), on t h e  addition of small amounts of addi t ives  e i t h e r  

i n  t h e  AP l a t t i c e  o r  mixed i n  heterogeneously. The binder  ( f u e l )  has been he ld  

constant as have such var iables  as p a r t i c l e  s i z e .  

The work was ca r r i ed  along two p a r a l l e l  but i n t e r -  

The primary 

The exothermic decomposition of ammonium perchlorate  most probably 

Previous 

have revealed t h e  pr inc ipa l  fea tures  o f  the  decamposition of 

influences the  canbustion behavior of AP composite propel lants .  

s tud ies  

pure AP, however there are  differences of opinion on t h e  mechanisms by which 

t h i s  decompositon  proceed^'^), I n  addi t ion,  t he re  have been s tudies  (13-17) 

on t h e  e f f ec t  of c a t a l y s t s ,  primarily t r a n s i t i o n  metal  oxides and salts, on 

t h e  decomposition of AP w i t h  t h e  e f f ec t  of the  ca t a lys t s  being a t t r i b u t e d  t o  

an increase i n  t h e  rate of e lectron transfer at poin ts  of contact w i t h  t h e  AP 

p a r t i c l e .  This conclusion is  plausible  but speculat ive.  

The first par t  of t h e  program w a s  d i rec ted  at a b e t t e r  understanding 

of t h e  mechanism of  both catalyzed and uncatalyzed ammonium perchlorate  decom- 

pos i t ion .  

means, t h e  various postulated reaction mechanisms. 

The experimental approach w a s  t o  t r y  and inf luence,  by chemical 

This was  done not only 
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by introducing heterogeneous addi t ives  but by inclusion of impuri t ies  i n  t h e  

c r y s t a l  l a t t i c e  and by changing t h e  chemical environment of t h e  material 

during decomposition. 

t r a n s i t i o n  metals -- copper, i ron ,  manganese, and cobal t .  These metals were 

used i n  the  form of organo-metallics o r  che la tes .  

i n  such chemical areas as bonding of t h e  m e t a l  and i n  physical  areas such as 

s o l u b i l i t y .  

The heterogeneous addi t ives  were r e s t r i c t e d  t o  four  
I; 

This introduced f l e x i b i l i t y  

The second pa r t  of the program w a s  aimed at r e l a t i n g ,  pos i t i ve ly  o r  

negatively,  the various mechanisms by which AP decomposes t o  t he  combustion 

process i n  an Ap composite combustion system. Relat ively l i t t l e  experimental 

work has  been done i n  determining the contr ibut ion,  i f  any, of the  condensed 

phase decomposition t o  t h e  ove ra l l  combustion mechanism. The experiments i n  

t h i s  a rea  were designed t o  r e l a t e  t he  e f f e c t s  ( i f  any) of t h e  t h r e e  AP 

decomposition mechanisms , (1) l a w  temperature, (2) high temperature, and 

(3) sublimation t o  t h e  combustion process. Variables such as p a r t i c l e  s i z e  

and fuel were kept constant,  however, pressure w a s  a var iab le  t h e  e f f e c t  of 

which w a s  investigated.  

When necessary, addi t ives  were synthesized t o  meet t h e  demands of t h e  

program. The experimental work u t i l i z e d  severa l  d i f f e ren t  thermogravimetric 

balances and d i f f e r e n t i a l  thermal equipment. In  addi t ion,  a pressure vesse l  

w a s  constructed s o  t h a t  d i f f e r e n t i a l  thermal analysis  could be run at pressures  

up t o  1000 ps i .  



. 
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PROCEDURES, RESULTS AND DISCUSSION 

I. EXPERIMENTAL 

A. EQUIPMENT 

All  ambient pressure d i f f e r e n t i a l  thermal analyses (MIA) were 

performed with a canmercial instrument (duPont 900). An attachment a l so  

allowed isothermal d i f f e r e n t i a l  thermal analysis .  Pressure MIA work used t h e  

controls  and recording sec t ion  of t h e  above instrument i n  addi t ion t o  a remote 

cable which ca r r i ed  t h e  e l e c t r i c a l  l eads  t o  a pressure vesse l  (Figure 1). 

Heating r a t e s  with t h e  pressure equipment, due t o  heat  losses  t o  t h e  pres- 

su r i zed  atmosphere, have been l imited t o  approximately lS°C/min. a t  1000 p s i .  

Further  improvements are  current ly  being made i n  t h i s  equipment. 

Thermogravimetric work w a s  performed on t h r e e  d i f f e ren t  i n s t ru -  

ments. For corrosive gas atmospheres, an apparatus w a s  used which consis ted 

of  a quartz spr ing i n  an oven heated tube and measurements were made with a 

cathometer. Isothermal measurements under air o r  ni t rogen atmospheres were 

made with a commerical automatic recording thermogravimetric balance (Ainsworth) . 
Non-isothermal measurements were made with an attachment t o  t h e  IYTA (duPont 950). 

Model combustion systems were mixed with a 50 gm ( A t l a n t i c  Research) 

hor izonta l  mixer. 

Crawford bomb. 

per  strand (each over a 2-inch d is tance) .  

The mixes were cast  i n t o  straws and burned, uncured, i n  a 

Each sample was wired so as t o  g ive  two separa te  time i n t e r v a l s  

B. MATERIALS 

A l l  inorganic oxidizers were r e c r y s t a l l i z e d  from a water so lu t ion .  

Ammonium perchlorate  (AP) w a s  r ec rys t a l l i zed  u n t i l  t h e  exotherm at  - 32OoC w a s  

reduced t o  a minimum. 

Pet r i  c c i  ari (lo) s t a r t i n g  with r ec rys t a l l i zed  AP. 

- 
The AP containing C10 ion w a s  made by t h e  method of 

Organic binder  materials 
3 

3 
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I , B, Materials (cont . ) 

were used as received. Metal chelates  were genera l ly  prepared by mixing an 

excess of t h e  ligand with t h e  metal  under bas i c  conditions i n  water o r  water- 

alcohol solutions.  In  t h e  ethanolamine s e r i e s  , the  compounds of i n t e r e s t  were 

made under neutral  conditions . 
I n  order t o  have metal  chelates  t h a t  were soluble  i n  t h e  organic 

binder,  it w a s  necessary t o  modify t h e  bas ic  l igands genera l ly  by t h e  addi t ion 

o f  long a lky l  chains. 

aldehyde ( i n  t h i s  study salicylaldehyde) w i t h  t h e  proper amine 

With t h e  Schi f f  bases , t h i s  i s  done by condensing an 

(12)- OH + H2NR + H20 

c=o 
H 

\ C=N 
H R  

\ 

A more camplex procedure (with much poorer y i e l d s )  w a s  necessary t o  s u b s t i t u t e  

a lkyl  chains on the methylene carbon of 2,4 pentanedione (acetylacetonate  o r  

AA) .  The method used involved t h e  f r e e  r a d i c a l  reac t ion  of 2,4 pentanedione, 

octene-1 and di-t-butyl peroxide (11) . 
C. PROPELLANT FORMULATION 

The basic  formulation used w a s  

Ammonium perchlorate  

c 1 4 ~  30% 

7 51 

105 - 1 7 7 ~  35% 

297 - 417% 35% 

Unsaturated hydroxy ( o r  carboxyl binder  24.64% 

Metal 0.36% 
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I, C ,  Propellant Formulation ( con t . )  

The amount of organic l i g m d  i n  t h e  che la te  w a s  subt rac ted  from t h e  binder 

so t h a t  both metal content and t o t a l  organic ma te r i a l  remained constant.  

5 
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11. RESULTS 

Except fo r  a few preliminary experiments, the emphasis i n  t h i s  work 

has been on t h e  change i n  thermal decomposition proper t ies  of t h e  oxid izer  

on exposure t o  different  environments o r  i n  canbination with small amounts of 

inorganic additives.  Work w a s  done on oxidizers  o the r  than AP primari ly  t o  

shed l i g h t  on the  AP decomposition mechanism. 

been described as occurring by t h r e e  separate  paths'') and t h i s  program has 

attempted t o  evaluate the  r e l a t i v e  contr ibut ions of  these  t h r e e  paths t o  t h e  

AP decomposition has genera l ly  

combustion process. 

A. LOW TEMPERATURE DECOMPOSITION 

This i s  t h e  predominant decomposit ion path which occurs between 

200 and 3OO0C and which s tops a f t e r  - 30% of the  sample has been consumed. 

A t  t h e  lower end of t h i s  temperature range (where t h e r e  i s  no complication 

from t h e  high temperature form), t h e  r a t e  and ac t iva t ion  energy i s  l i t t l e  

a f fec ted  by metallic The low temperature decomposition i s  

sens i t i ve  t o  s m a l l  amounts of C10 ions trapped i n  t h e  AP l a t t i c e  and i s  

a f fec ted  by changes i n  t h e  environmental atmosphere. 

- 
3 

1. Ammonia ( N H  ) Atmosphere 3 

If AP has been exposed t o  I" o r  r e c r y s t a l l i z e d  f r an  an 3 
ammonia so lu t ion ,  t h e  induction period (T) before decomposition i s  increased 

but t h e  subsequent decomposition is  not affected' ').  Markowitz(12) reported 

t h a t  at 2 4 O o C  decomposition could e f f ec t ive ly  be prevented i n  an ammonia 

atmosphere. During th i s  study the  var iab les  inves t iga ted  were : ( 1) percent 

3 of NH i n  t h e  atmosphere; (2 )  t h e  point during t h e  decanposition when NH 

w a s  introduced; and (3)  t h e  temperature range over which t h e  experiments 

were performed. 

3 

A low heating rate mA of AP under an ammonia atmosphere 

6 
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11, A, Low Temperature Decomposition (cont . 1 

showed no decomposition unt-il t h e  temperature was above 40OOC. 

thermal conditions , an ammonia atmosphere would prevent decmposi t ion  at any 

Under i so-  

temperature up t o  - 4OO0C.  A t  400OC when nitrogen i s  re-introduced, decompo- 

s i t i o n  begins ,  after a delay, i n  a dece lera t ing  curve similar t o  a sample not 

exposed t o  NH 

s i t i o n  be prevented, it could be stopped i n  e i t h e r  t h e  acce lera t ing  o r  decel- 

Studies at 265Oc (Figure 2)  show t h a t  not only could decmpo- 3' 

e r a t i n g  pa r t  of t h e  decomposition in  atmospheres 10% or g r e a t e r  i n  ammonia. 

Under a 5% ammonia atmosphere, decomposition appears t o  continue normally 

although t h e r e  i s  a sharper leveling o f f  at 30% decomposition (poss ib ly  due t o  

decreased sublimation).  Af te r  decomposition ceases and ammonia i s  replaced by 

n i t rogen ,  t h e r e  is  a r e l a t i v e l y  long delay before decomposition resumes. 

Although t h e r e  i s  a s m a l l  increase  i n  ac id  concentration i n  AP t h a t  has been 

decomposed t o  30%, a b r i e f  exposure of t h i s  ma te r i a l  t o  ammonia does not r e s u l t  

i n  any fu r the r  decomposition. This would argue against  decomposition ceasing 

at 30% due t o  a build-up of perchlor ic  ac id .  

2. Hydrogen Chloride ( H C 1 )  and Chlorine ( C 1 2 )  

Both o f  t hese  gases modified t h e  shape of t h e  decomposition 

curve from what it i s  under a nitrogen atmosphere. One i n t e r e s t i n g  poin t  i s  

t h a t  n e i t h e r  gas a f f ec t ed  t h e  induction period at a given temperature. Once 

decomposition s t a r t e d ,  both H C 1  a n d  C12  acce le ra ted  t h e  30% decomposition; 

however, H C 1  had l i t t l e  e f f e c t  beyond t h i s  point while C1,  caused t h e  

decomposition t o  go t o  c m p l e t i o n  i n  a cont inua l ly  dece lera t ing  curve. 

L 

7 I 
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11, A ,  Low Temperature Decomposition ( cont . 
- 

3. Effect of*CIOg on AP Decanposition 

- 
The e f f e c t  of C103 on AP decomposition has previously been 

invest igated by DTA(lO).  It was noted t h a t  t he re  is  an exothermic reac t ion  

after t h e  AI? phase t r a n s i t i o n  whose pos i t ion  and magnitude is  a function of 

- 
t h e  C103 concentration. 

before the  AP phase t r a n s i t i o n .  

C103 

phase of t h e  decomposition i s  over, t he  remaining AP decmposes at t h e  normal 

uncatalyzed r a t e ,  Figure 3. 

AP a l w a p  l eve ls  o f f  at approximately 30% of total decomposition, t h e  percent 

attainment of t o t a l  decomposition i s  a function of temperature when C10 ion 

i s  incorporated i n t o  t h e  AP c rys t a l .  With increasing temperature, i n  iso-  

thermal decompositions, t h e  percent of t o t a l  decmposi t ion decreases up t o  t h e  

AP phase t r a n s i t i o n  and then increases  s l i g h t l y .  The shape of t h e  curve remains 

sigmoid with the  percent of t o t a l  decaaposition ranging from - 60% at 2OO0C t o  

- 241 at 240OC. The chlorate  ion reduces but  does not e l iminate  t h e  induction 

period. 

s i t i o n  and the  percentage of t o t a l  decomposition as a function of temperature. 

Due t o  t h e  exothermic nature of t h e  decmposi t ion above 24O0C (however not 

below 240°C as determined by isothermal IEA) it w a s  not possible  t o  t r e a t  t h e  

decmposi t ion k ine t ica l ly .  

induction time as a measure of t h e  rate, 

containing 0.035% C10 

However, at no concentration does t h e  exothem occur 

Thermogravimetric work has now shown t h a t  t h e  
- 

ion accelerates  t h e  low temperature (30%) decomposition of AP. Once t h i s  

While t h e  low temperature decomposition of pure 

- 
3 

Table 1 l i s t s  some representat ive times f o r  t h e  accelerated decmpo- 

It w a s ,  however, possible  t o  do t h i s  using t h e  

A p l o t  of log  ‘I against  l/T°K f o r  AP 
- - 

and f o r  0.07% C10 gave ac t iva t ion  energies of 24.8 3 3 
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11, A ,  Low Temperature Decomposition (cont . ) 
- - + 2 Kcal/mole and 26.1 - + 2 Kcal/mole, respect ively.  

ma te r i a l  i s  decomposed under an ammonia atmosphere, it behaves as pure AP 

I f  t h e  C 1 0 3  containing 

under similar conditions.  The la rge  broad exotherm at 300 - 325'C is s h i f t e d  

t o  a sharp exotherm at - 4 0 0 O C  and weight l o s s  i s  prevented u n t i l  t h i s  higher 

temperature (Figure 4 ) .  

For burning r a t e  s tud ie s ,  AP containing 0.1% K C l O  w a s  3 
screened i n t o  various p a r t i c l e  s izes .  This ox id izer  w a s  then used t o  obtain 

burning r a t e s  with t h e  standard combustion model formulation. The burning r a t e  

data showed t h a t  t h e r e  w a s  no increase i n  burning r a t e  over t h e  pressure range 

of 300 - 2500 ps i .  I n  f a c t ,  t he re  w a s  a decrease at higher pressures  but  t h i s  

has not ye t  been reconfirmed. 

TABLE 1 

3 ISOTHERMAL DECOMPOSITION OF AP CONTAINING 0.07% K C l O  

Temper at w e  
O n  

290 

2 80 

270 

259 

2 39 

2 30 

220 

210 

200 

Induction Time 
(T) min. 

Fast Port ion of 
D e  c omp o s i t i on 

Time 
% Decmposition % (min. ) 

2 *75 32 26 3.7 

3.33 32 21  7.0 

4.50 33 28 15  

7-50 31 21  18 

23.5 24 15  52 

49.0 27 17  106 

51.0 26 1 7  105 

90.0 37 30 186 

179 0 60 43 349 

9 
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11, Results (cont.) 

B. HIGH TEMPERATURE DECOMPOSITION 

Most me ta l l i c  addi t ives  a f f ec t  t h e  high temperature decanposition 

of Ap. I n  t h e  uncatalyzed case,  t h i s  decomposition does not become appreciable 

u n t i l  .. 4OOOC; however, i n  t h e  presence of c a t a l y s t s ,  r ap id  decranposition r a t e s  

m a y  occur as l o w  as 260Oc (just  above t h e  AP phase t r a n s i t i o n ) .  

Most of t h e  previous work on ca t a lys i s  has been done with t r a n s i -  

( 13-17 , The approach i n  t h i s  work w a s  t o  use a s e r i e s  of t i o n  metal  oxides 

t r a n s i t i o n  metal chelates  as addi t ives .  This was t o  permit va r i a t ions  i n  

bonding of the  metal and t o  canpare various m e t a l s  under the most cont ro l led  

conditions (bonding , s o l u b i l i t y  i n  binder ,  e t c .  . 
Cu, Fe, Mn and Co. 

out t o  be impossible as they a l l  i n t e rac t ed  with the  AP, many of t h e  reac t ions  

being exothermic. Even i f  t h e  mater ia l  w a s  s t a b l e  up t o  t h e  time of  reac t ion ,  

t h e  products of decomposition reacted so t h a t  t h e  ove ra l l  reac t ion  a l t e r e d  t h e  

additive.  However, t h i s  d id  not prevent some in t e re s t ing  and useful da t a  from 

being obtained w i t h  these  systems. 

The metals se lec ted  were 

Isothermal k i n e t i c  s tud ie s  using these  mater ia l s  turned 

Before looking at t h e  catalyzed system, AP w a s  inves t iga ted  themo-  

gravimetr ical ly  under t r ans i en t  heating conditions.  It was  found t h a t  t h e  AP 

decanposition changed from a control led t o  a run-away reac t ion  whenever t h e  

sample temperature reached 4 7 5 O C .  Under heating rates of 10°C/min., almost 

90% weight loss  occurred before t h i s  temperature while at 50°C/min., only about 

20% p r i o r  decanposition occurred. I n  t h e  catalyzed system t h i s  temperature w a s  

lowered t o  between 260 - 360'~ and general ly  w a s  preceded by l i t t l e  o r  no loss 

of weight. 
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Since copper i n  almost any compound showed reasonable a c t i v i t y  i n  

t h e  deccanposition of AP, it was chosen f o r  most of t h e  e a r l y  work. One of t h e  

most v e r s a t i l e  s e r i e s  of chelates were t h e  salicylaldehydeimine Schi f f  bases. 

The coordinated bonding i n  these  compounds i s  through t h e  oxygen and nitrogen 

atoms of t he  l igand. Table 2 l i s t s  p roper t ies  of some representa t ive  cam- 

pounds. I n  addition, s eve ra l  chelates a re  l i s t e d  i n  which a t  l e a s t  one of t h e  

bonding atoms w a s  p a r t  of a r ing  s t ruc tu re .  It can be seen t h a t  t hese  l a t te r  

compounds a re  genera l ly  more st  able thermally although t h e  thermal s t a b i l i t y  

of t h e  salicylaldehydeimine can be increased when t h e  two l igands  a r e  connected 

with a bridge such as ethylene diimine. The l a r g e  range i n  s o l u b i l i t y  can a l s o  

be seen as a function of t h e  a lkyl  chain. When a s e r i e s ,  which var ied  only i n  

s o l u b i l i t y ,  of these  Cu compounds was incorporated i n t o  a propel lan t  (cons tan t  

Cu content ) ,  t h e i r  burning r a t e s  were i d e n t i c a l  below - 1000 p s i .  

pressure,  t he  more insoluble mater ia l s  r e s u l t e d  i n  a leve l ing  of f  of t h e  pres- 

sure  slope (Figure 5 ) .  

r e s u l t e d  when t h e  l igand  was used without t h e  metal. 

Above t h i s  

Subsequent work showed t h i s  type of pressure  exponent 

Another s e r i e s  of chelates w a s  made using ethanolamines as l igands .  

These compounds underwent an in t e rna l  redox reac t ion  a t  t h e i r  melting point (18) 

and then in t e rac t ed  exothermically with AP below t h e  phase t r a n s i t i o n .  The 

product of t h i s  i n t e r n a l  redox reaction, which was t h e  ac t ive  compound, w a s  

never r e a l l y  i d e n t i f i e d  except t h a t  it appeared more polymeric than c rys t a l -  

l i n e .  Propellant burning r a t e s  w i t h  t h e s e  ma te r i a l s  r e s u l t e d  i n  considerable 

acce lera t ion  at pressures below 1000 p s i ,  but a l so  l eve led  o f f  above t h i s  

pressure ,  

11 



Report 1062-8117 

11, B, High Temperature Decomposition ( cont . ) 
Work was extended t o  more fu l ly  iden t i fy  t h e  reac t ion  and products 

t h a t  occur when organo-metdlics i n t e r a c t  with AP at low temperatures.  

low temperature exothermic in t e rac t ion  between AP and copper tr iethanolamine 

is  non-reversible (Figure 6) as i n  t h e  similar case of ferrocene. 

The 

However, 

TABLE 2 

THERMAL AND SOLUBILITY PROPERTIES OF SOME COPPER (11) CHELATES 

S o l u b i l i t y  Melting 
Ligands (mg/cc hexane) Point ,  O C  

N-subst i t u t e d  
bis-( salicylaldehydeimine) Cu( 11) 

R = methyl 

ethylene 

buty l  (c,) 

Octyl (c8) 

dodecyl ( C12) 

octadecyl ( C18) 

Triethanolamine 

Salicylaldehyde 

8-hydroxyquinoline 

Acetylacet onate 

Phthalocyanine 

0.32 

I 

14.0 

446 

611 

29.6 

I 

I 

I 

I 

I 

160 a 

320 

80 

- 50 

- 60 

-60 

135 

260 

325 

280 

,400 

I = insoluble  (q0.05 mg/cc) 

a melts revers ib ly  

b s t ab le  with AP up t o  240OC 
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even with those addi t ives  where there  is  no thermal ind ica t ion  of i n t e rac t ion  

t h e r e  i s  chemical evidence for a reaction. I n  order t o  determine what t hese  

in t e rac t ions  between t h e  oxidizer  and addi t ive  are, Cu(AAl2 was added t o  KC104 

and NH4Br. 

point  but reacted with AP p r i o r  t o  t h i s  point .  A DTA t r a c e  shows t h a t  i n  t h e  

presence of KC104 t h e  C U ( A A ) ~  melts (-280OC) as i n  a i r  and with no ind ica t ion  

of an i n t e rac t ion  with t h e  KC104 below - 340OC. 

t h a t  by 3OO0C t h e  Cu(AA) 

indica ted  t h i s  i n t e rac t ion  occurred below 20OoC. 

Cu(AA) w a s  s e l ec t ed  as it was  s t a b l e  i n  a i r  up t o  i t s  melting 2 

The t r a c e  with NH Br shows 4 
has in te rac ted  with t h e  NH4Br, and chemical evidence 2 

The exothermic in te rac t ion  of with ferrocene at 1 8 0 O c  r e s u l t s  

i n  a product of i nde f in i t e  composition which X-ray analysis  and I R  do not help 

t o  i d e n t i e .  

and H 3.2%. 

t o  Fe 0 

i s  f ine ly  divided and general ly  ign i tes  when heated i n  air .  

not exothermically i n t e r a c t  with AP as does ferrocene (Figure 7 ) .  

shows t h e  difference i n  burning ra tes  with t h e  two mater ia l s  at constant i ron  

content. 

ruthenium was subs t i t u t ed  for i ron ,  e.g. ,  Ru( cpI2. 

An approximate analysis i s  Fe 11.5%, N 7.1%, 0 20.2%, C 51.8%, 

The mater ia l  i s  insoluble i n  hot a l k a l i  or hot ac id  but decomposes 

i n  a i r  (but not ni t rogen)  a t  temperatures above 4 0 0 O C .  The ma te r i a l  
2 3  

This product does 

Figure 8 

This type of low temperature in t e rac t ion  w a s  a l so  obtained when 

When acetylacetonate (AA) w a s  mixed i n  a propel lan t ,  it re su l t ed  

i n  no change i n  t h e  cont ro l  burning rate; the re fo re ,  t h i s  l i gand  was se l ec t ed  

f o r  a s e r i e s  of chelate  addi t ives .  Most of t hese  compounds melt (Table 3) at 

or below t h e  phase t r a n s i t i o n  temperature of AP and r e s u l t  i n  AP decomposing 



. .  
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I1 , By High Temperature Decomposition Ccont . I  

exothermically near t h e  phase t r a n s i t i o n .  

a ture  in te rac t ion  s imi la r  t o  those of Fe(cpJ2 and Ru(cp12 w i t h  AP. 

act ion i s  d i f fe ren t  from t h e  l o w  temperature exothermic decomposition of AP 

caused by other  metal  chelates  (Coy Mn, and C U I .  

t h e  i ron  canpound, a t  moderate heating rates, goes t o  completion (peak at  

-2O5'C) before the  AP decomposition has r e a l l y  begun. 

The i r o n  che la te  shows a low temper- 

This i n t e r -  

The exothemic  reac t ion  with 

The decrmposition of AP 

begins a f t e r  t h i s  i n t e rac t ion ,  and it appears at l e a s t  q u a l i t a t i v e l y  t o  be less 

exothermic than t h e  similar decrmposition i n  t h e  presence of Co(AA) 

o r  MII (AA)~ .  

Co(AAI2, 3' 

TABLE 3 

2,4-PENTANEDIONE TRANSITION METAL CHELATES 

Me It ing 
Ccanpound Poin t ,  O c  

Fe(AAI3 179 

cu( AA) 2 80 

Mn( AA) 165 

Mn( AA) 260 

co( AA) 240 

c0(AAl2 Sublimes 

Redox reac t ion  and loss of one AA 

Melts with reac t ion  

Loss of any coordinated solvent 
between 120 - 15OoC 

The C U ( A A ) ~  and Fe(AA) were modified t o  increase t he i r  s o l u b i l i t y  

i n  t h e  binder by put t ing alkyl chains (branched and s t r a i g h t )  on t h e  methylene 

carbon of t h e  AA. IYTA showed tha t  t h e  change i n  l igand  d i d  not a f f e c t  t h e  

che la te ' s  act ion w i t h  AP. 

difference between t h e  soluble  and insoluble  addi t ives  over t h e  e n t i r e  pressure 

3 

The burning rate r e s u l t s  i nd ica t e  no e s s e n t i a l  

14 
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range. 

as ca t a lys t s .  

Figure 9 shows representat ive burning r a t e s  with d i f f e ren t  AA chela tes  

If a heterogeneous type ca t a lys t  i s  added t o  t h e  AP and t h e  system 

decomposed under an ammonia atmosphere, t h e  r e s u l t s  a r e  qui te  d i f f e ren t  from 

pure AP or AP containing KClO 

remains t h e  same under ammonia as it is  under ni t rogen (for copper chramite 

-32OoC, Figure 1 0 ) .  

under ni t rogen than under ammonia and with Cu0202 while t h e  sample i n  ni t rogen 

def lagrated,  t h a t  i n  ammonia detonated. 

AP + Cu0202 under ammonia at 2 6 5 ' ~  r e su l t ed  i n  a detonation which destroyed 

t h e  quartz spring and blew out t h e  top  s e a l  of t h e  apparatus. 

t h i s  t ime,  an SRI report  (19) showed t h a t  they a l so  found t h a t  t h e  rate of AP 

decomposition catalyzed with Cu0202 w a s  t h e  same under ni t rogen and under a 

p a r t i a l  pressure of ammonia. Detonation may r e s u l t  i n  t hese  experiments fram 

t h e  increased concentration of NH 

t h e  perchlor ic  acid decomposition products can reac t .  

The temperature a t  which def lagra t ion  occurs 3' 

There i s  a g rea t e r  weight loss p r i o r  t o  def lagra t ion  

A n  attempt t o  isothermally decompose 

A t  approximately 

(poss ib ly  adsorbed on t h e  Cu0202) with xhich 3 

C. EFFECT OF BASIC MATERIALS 

The change i n  t h e  burning r a t e  p l o t  when t h e  bas i c  s a l i cy la lde -  

hydeimine l igand was used suggested some preliminary inves t iga t ion  of t h i s  

phenomena. 

( t r i b u t y l  and dimethyldodecyl), t h e  propel lant  had a g r e a t l y  reduced burning 

r a t e  and pressure exponent, Figure 11. 

with increasing pressures .  

When propel lants  were formulated with 1% of a t e r t i a r y  amine 

The e f f e c t  becomes more pronounced 

When 10% (NH4)2  SO4 w a s  mixed i n t o  a p rope l l an t ,  
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t h e r e  was a noticeable e f fec t  on burning r a t e ;  however, t h i s  e f f e c t  w a s  p r i -  

marily at t h e  l o w  pressures ,  Figure 12. 

but shed important l i g h t  on t h e  ove ra l l  combustion mechanism. 

These experiments are only preliminary 

D. EFFECT OF PRESSURE 

The pressure M1A made it possible  t o  look at sane of t h e  important 

react ions as a f'unction of pressure.  Work with t h e  pressure DTA ind ica t e s  t h e  

g rea t e s t  e f f ec t  of pressure (separated frau heat f l u x ) ,  i n  t h e  range f rm 

15 p s i  t o  1000 p s i ,  i s  a t  t he  lower pressures .  Rela t ive ly  l a r g e  changes occur 

between 15 - 250 p s i  while l i t t l e  change is  noted frm 500 - 1000 p s i .  

noted t h a t  under all pressures t h e  f irst  de tec tab le  exothermic decomposition 

occurs at -310'C. 

a ture  at which decomposition begins but does a f f ec t  t h e  r a t e  of decanposition 

at t h a t  temperature, Figure 13. Waesche (22) does not f i n d  as l a rge  of a change 

i n  t h e  f i n a l  def lagrat ion temperature of AP with pressure as we do; however, 

It i s  

Increasing pressure does not appreciably a f f ec t  t h e  temper- 

work at SRI (27) f a i r l y  w e l l  confirms our experiments. Experimental d e t a i l s  

a r e  not given on t h e  pressure containers used by Waesche i n  h i s  AF decmposi t ion  

experiments using d i f f e r e n t i a l  scanning calorimetry.  It i s  possible  with t h e  

s i z e  and gecxnetry (small sample with a l a rge  surface a rea  i n  contact with t h e  

environment) of t h e  sample used i n  DSC experiments t h a t  much of t h e  heat gener- 

ated i n  t h e  decmposition may be e f f ec t ive ly  d iss ipa ted  by t h e  compressed gas 

environment ( i  .e. , t he  campressed gas i s  a good heat  s i n k ) .  

lower t h e  def lagrat ion of AP t o  t hese  lower temperatures at ambient pressure;  

however, pressure increases  do not fu r the r  lower t h i s  temperature. There 

appears t o  be a l imi t ing  temperature below which AP w i l l  not def lagra te  

Additives general ly  
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(pure  o r  catalyzed) , at l e a s t  i n  the pressure range s tudied .  

poss ib le  t o  increase t h i s  temperature by adding bas i c  addi t ives  (amines) for 

t hose  which re lease  NH on decanposition, e .g . ,  (NH 1 SO4 and (NH ) C 0 

Figure 14. 

It i s ,  however, 

3 4 2  4 2 2 4 ’  

A t  500 p s i  t h e r e  i s  very l i t t l e  d i f fe rence  between t h e  DTA pa t te rns  

of various addi t ives  which do not react with AP. With t h e  addi t ives  which do 

r e a c t ,  t he re  is  a s l i g h t  increase i n  t h e  magnitude o f  t h e  low temperature 

exotherm with increasing pressure.  
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111. DISCUSSION 

A. LON TEMPERATURF: AP DECOMPOSITION 

The lou temperature mechanism of AP decamposition has been i n v e s t i -  

gated by m a n y  workers and most general ly  ascr ibed t o  an e l ec t ron  t r a n s f e r  

process,  Recently Jacobs'9' has reexamined t h i s  work and come t o  t h e  con- 

c lusion t h a t  all  AP decanposition processes have t h e  same rate determining 

s t e p  -- proton t r ans fe r .  

The idea  tha t  the uncatalyzed decanposit ion of AP, over most of i t s  

temperature range, is  governed by a proton t r a n s f e r  mechanism i n  which NH 

HClO are formed i n  t h e  r a t e  determining s t e p  has same support from present  

s tud ie s  of AP decomposition under an ammonia atmosphere. 

and 3 

4 

The re ta rd ing  e f f e c t  of NH on t h e  decomposition of AP can be 3 
understood i f  the f i r s t  s t e p  i n  t h e  decanposition involves equilibrium 

That H C 1  accelerates  but does not bas i ca l ly  a l t e r  t h e  p a t t e r n  of decanposition 

i s  cons is ten t  since it does not en te r  t h e  rate determining equilibrium (except 

possibly t o  form some NH4Cl which sublimes f a s t e r  than N H 4 C 1 0 4 ) .  

of C 1  

p lace t h e  equilibrium t o  t h e  r igh t  (whether it has t h e  k i n e t i c  r e a c t i v i t y ,  a t  

t h i s  temperature, t o  do t h i s  has not ye t  been e s t ab l i shed) .  

t h e  C12  continues t o  a f f e c t  decanposition after t h e  intermosaic mater ia l  (30%) 

has been consumed. Neither gas a f f ec t s  t h e  induct ion time. 

The e f f e c t  

may be due t o  i t s  thermodynamic p o t e n t i a l  t o  oxidize ammonia and dis- 2 

Unlike t h e  H C 1 ,  
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Additional 

AP Decomposition (cont  .)  

nformation on t h i s  process comes ;,-an t h e  observations 
- 

with  material containing s m a l l  amounts of  C 1 0  ion.  The K C l O  i s  not iso- 

morphous with NH4C104  so  t ha t  t h e  material w i l l  be concentrated at  disorganized 

p a r t s  of t h e  l a t t i c e .  

3 3 

This  can be seen by tbe  reduction (bu t  not e l iminat ion)  

of t h e  induction per iod and by t h e  accelerat ion of decomposition being l i m i t e d  

t o  t h e  30% decomposition ( i . e .  , i n t e r s t i t i a l  material) .  

heterogeneously with AP, t h e r e  i s  no e f f e c t  on AP decomposition. 

has only a s m a l l  e f f e c t  on t h e  rate of AP decomposition below 2 4 O O C ;  however, 

a t  very low temperatures ( -2OOOC)  it increases  t h e  extent  of t h i s  decomposition 

If K C l O  i s  mixed 3 - 
The C 1 0 3  ion 

- 
t o  60%. 

t h e  e s s e n t i a l l y  r i g i d  C 1 0 4  determined l a t t i c e  and has only a moderate e f f e c t  

on t h e  AP decomposition. As soon as t h e  anion p a r t  of t h e  l a t t i c e  i s  f ree  t o  

Below t h e  AP phase t r a n s i t i o n  it appears as i f  t h e  C 1 0  i s  t rapped i n  3 - 

- 
r o t a t e ,  t he re  i s  an accelerated decmposi t ion due t o  the C 1 0  ion and t h e  

reac t ion  becomes exothermic. I f  t h e  reac t ion  at t h i s  point w a s  between C 1 0  

3 and NHqC104 ,  t h e r e  should be no e f f ec t  of an ammonia atmosphere. Since NH 

3 
completely r e t a rds  t h i s  reac t ion  below 4 0 O o C  ( s imi la r  t o  pure AP) , t h e  C 1 0  

must reac t  with t h e  d issoc ia t ion  products (NH 

decomposition, or form favorable s i t e s  f o r  these  reac t ions .  Since t h e  exotherm 

3 - 
3 

- 

or H C 1 0 4 ) ,  with products of  t h e i r  3 

due t o  t h i s  reac t ion  i s  not eliminated but displaced t o  a higher  temperature,  

t h e  reac t ion  of  C 1 0  

not come i n t o  int imate  enough contact with t h e  C 1 0  

could e n t e r  i n  a scheme s i m i l a r  t o  t ha t  of Rosser ("I and r eac t  with HC1O4 

- 
i s  e i t h e r  not with NH or t h e  NH from t h e  atmosphere does 

3 

3 3 3 - - 
i n  t h e  s o l i d .  The C 1 0 3  

- 
H O C 1 0  + C 1 0  - 2 C 1 0 3  + OH- 

3 3 
2 c103 - 2 c102 + o2 
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( i n s t ead  of RosserI's scheme of two perchlor ic  ac id  molecules r eac t ing ) .  Since 

a very small quantity of t h i s  material e f f e c t s  a l a r g e  change i n  r a t e ,  it must 

be e i t h e r  c a t a l y t i c  ( regenerate  C10 -1, produce o ther  r eac t ive  intermediates ,  

o r  form favorable s i t e s  at which deccmposition can occur. 

3 

A s  t he  temperature approaches 4OO0C,  decomposition of  Ap occurs 

even i n  an ammonia atmosphere. This  cannot be due only t o  t h e  thermal break- 

down of t h e  C I O h  

which do not decompose at t h i s  temperature) .  

of a proton w i t h  t h e  C104 

"run-away" react ion from t h e  thermal breakdown of HClO 

- - 
ion ( s ince  the re  are salts with f r e e l y  r o t a t i n g  CIOq ion 

There may be enough assoc ia t ion  
- 

at these  temperatures t o  i n i t i a t e  what becomes a 

4 '  
B. HIGH TEMPERATURE AP DECOMPOSITION 

Heterogeneous ca t a lys t s  such as metal oxides and t r a n s i t i o n  m e t a l  

chelates  have l i t t l e  e f f e c t  on t h e  low temperature decmposi t ion  but do a f f ec t  

t h e  high temperature r a t e .  Not only do they  r e s u l t  i n  an increase i n  t h e  

ove ra l l  r a t e  of the AP decomposition but a change i n  t h e  r a t e  determining s t ep .  

The ac t iva t ion  energy f o r  t h e  high temperature decomposition of uncatalyzed AP 

i s  -30 k ~ a l / m o l e ( ~ ) ,  wh i l e  f o r  most of  t h e  catalyzed reac t ions  it i s  -45 kca l /  

mole (20). This l a t t e r  value is' c lose  t o  t h e  energy involved i n  t h e  breaking 

Waesche (22) measured t h e  heat of t h e  If0 - C103 

of decomposition f o r  catalyzed and uncatalyzed AP and found a s i g n i f i c a n t  d i f -  

ference between t h e  two paths .  

-260 cal/gm while t ha t  f o r  a copper c h r m i t e  catalyzed decomposition w a s  

-370 ca l l@.  

bond i n  perchlor ic  acid.  (21) 

The Q fo r  t h e  uncatalyzed deccmposition w a s  
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There i s  an increasing amount of evidence t h a t  t h e  decomposition 

of  AP under high heat  f luxes and t h e  catalyzed decomposition under moderate heat 

f luxes  involves t h e  decomposition o f  perch lor ic  ac id ,  I n  some i n t e r e s t i n g  

experiments , Saunders and P e l l e t t  (23) have shown t h a t  when AP i s  decomposed 

by a pulsed ruby laser  i n  the  presence of Fe 0 MnO and copper chromite 

t h e  major fragments (as detected by a mass spectrometer) are NH 
2 3’ 2 

H C 1 ,  C 1 0 2 ,  3’ 
C10, HOC1, NO and H20; HC104 i s  qui te  small i n  comparison t o  t h a t  found i n  t h e  

low temperature decomposition(24). I n  t h e  present  program it was found t h a t  

i n  t h e  presence of  heterogeneously added metal oxides or chela te  c a t a l y s t s  

t h e  decomposition of AP proceeds the same under ammonia and ni t rogen atmospheres. 

Since under NH t h e  equilibrium l i e s  almost e n t i r e l y  on t h e  s i d e  of t h e  undis- 

soc ia ted  mater ia l  t h e  c a t a l y s i s  appears t o  be i n  t h e  s o l i d  phase. The ac t iva t ion  

3 

energy t h a t  Jacobs (20) f inds  f o r  the decomposition of AP + Cu0202 and t h a t  

Levy (21) f inds  f o r  the  decomposition of HC104 are almost i den t i ca l .  The 

perchlor ic  ac id  decomposition could be similar i n  t h e  s o l i d  phase even i f  t h e  

proton i s  not f u l l y  t ransfer red .  
+ - 

A t  temperatures where both NH4 and C I O h  

a r e  f r e e l y  ro t a t ing  it would be possible  t o  have an intermediate ,  NH3---H---OC103, 

whose catalyzed decomposition would be similar t o  H C l O  The products of  t h i s  

decomposition can then fu r the r  react  with NH 

decomposition involves HC104 and not j u s t  t h e  (2%- ion i s  ind ica ted  by similar 

experiments using KClO as t h e  oxidizer.  When adding t h e  same add i t ive  as i n  

t h e  AP experiments and passing ammonia over t h e  sample, no de tec tab le  react ion 

4’ 
+ (or N H 3 ) .  That t h e  catalyzed 4 

4 

21 
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occurred. 

AP deflagrat ion occurred. 

ion of t h e  KC104 i s  f r ee ly  r o t a t i n g  as it i s  at the  def lagra t ion  temperature of 

AP. 

This is  true even a t  temperatures higher than those  at which t h e  
- 

A t  these  temperatures (above 3 O O 0 C ) ,  t h e  C I O b  

Although many compounds were t e s t e d  (us ing  t h e  four s e l ec t ed  metals)  

t h e i r  ove ra l l  e f f ec t s  on t h e  AP decomposition as' followed by DTA were sur- 

p r i s ing ly  similar.  A t  ambient pressure,  they a l l  lowered t h e  def lagra t ion  

temperature t o  between 320 and 38OoC. 

narrower with an increase i n  pressure and it appears t h e r e  i s  a lower l i m i t  

t o  t he  temperature at which AP can be catalyzed t o  def lagra t ion .  This i s  

most probably the temperature at which t h e  heterogeneous decomposition of 

H C l O  becomes appreciable. Differences i n  t h e  c a t a l y s t s  are most l i k e l y  due 

t o  the  r a t e  a t  which they catalyze the  decomposition of AP at t h i s  temperature. 

Considering t h e  rate i s  rap id  and the  maximum di f fe rence  between c a t a l y s t s  

i n  an AP composite propel lant  i s  % a fac to r  of 2 ,  t h e  d i f fe rence  would not  

be detected by these experiments. One q u a l i t a t i v e  observation is  t h a t  i n  the  

DTA experiments copper compounds o f t en  cause detonation r a t h e r  than def lagra t ion  

(and general ly  are t h e  most e f f e c t i v e  c a t a l y s t s  i n  p rope l l an t s ) .  

This temperature range became even 

4 

One general d iv is ion  t h a t  can be made between addi t ives  i s  t h a t  one 

group only catalyzes t h e  AP decomposition while t h e  o the r  group not  only 

catalyzes  but exothermically i n t e r a c t s  with t h e  AP. This exothermic in t e r -  

ac t ion  i s  generally at temperatures below the  phase t r a n s i t i o n  of  AP. Comparison 

s tud ie s  with other ammonium and perchlora te  salts  ind ica t e  t h a t  both the  

ammonium ion ( o r  similar ions such as methyl s u b s t i t u t e d  ammonium ions )  and 

the  perchlora te  ions a re  necessary for  t h i s  react ion.  An i n t e rac t ion  not 
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detec tab le  by DTA (but  de tec tab le  chemically) occurs between many of  t hese  

add i t ives  and t h e  ammonium salts but not with t h e  perchlora te  salts. This 

would ind ica t e  t h e  i n i t i a l  s t e p  i s  a reac t ion  between t h e  metal che la te  and 

t h e  ammonium ion which i s  then followed by an i n t e r a c t i o n  of one of t hese  

products and t h e  perchlora te  ion. It i s  t h i s  second s t e p  which r e s u l t s  i n  

t h e  exothermic p a r t  of t h e  reaction. Examples of t h i s  type  of reac t ion  a re  

found with addi t ives  such as ferrocene and copper tr iethanolamine chloride.  

C. COMBUSTION 

The 'low temperature' decomposition of  AP does not a f f e c t  t h e  

burning r a t e  of a composite propellant with normal thermal d i f f u s i v i t y .  A 

comparison of t h e  frequency f a c t o r  and ac t iva t ion  energy of t h e  low temperature 

decomposition of AP and t h a t  of sublimation of AP shows them t o  be about 

equal"). However, t h e  values f o r  t h e  low temperature decomposition are f o r  

t h e  decomposition process which occurs a f t e r  t h e  inducation t i m e  ( T ) .  The 

induction time va r i e s  with temperature and a p l o t  of T aga ins t  1/T r e s u l t s  i n  

an a c t i v a t i o n  energy s i m i l a r  t o  t ha t  o f  t h e  decomposition process. Using 

t h i s  information, t h e  value of  T can be computed - - 

J 
for higher temperatures. These computations show t h a t  t h e  value of T a t  

5OO0C ( ~ 3 0 0  msec.) i s  long i n  comparison t o  processes occurring i n  a burning 

propel lan t .  The value o f  T at 5OO0C i s  longer than t h e  time from when a poin t  

i n  t h e  propel lan t  gra in  f i r s t  experiences a temperature r i s e  t o  t h e  time at 

23 
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which it deflagrates  (%lo - 30 msec.). 

t h e  temperature p r o f i l e  of t h e  propel lant  and t h e  burning rate; however, it 

i s  shor t  compared t o  T f o r  most composite propel lants .  

This l a t t e r  t i m e  i s  a funct ion of 

The mechanism t h a t  becomes competitive with sublimation i s  t h e  

catalyzed high temperature decomposition. It i s  i n  t h i s  area t h a t  most 

addi t ives  a f f ec t  t h e  burning r a t e  of a composite propel lant .  

evidence both ind i rec t  ( t h i s  work) and d i r e c t  (Reference 23) ind ica tes  t h a t  

t h i s  process involves the  decomposition of perchlor ic  acid. 

Most of  t h e  

The effect iveness  of an addi t ive  i n  a l t e r i n g  t h e  burning r a t e  of 

propel lant  var ies  with d i f f e ren t  metals and with d i f f e ren t  compounds of  t h e  

same metal. Chelates , [bis-(N-R salicylaldehydeimine) Cu(I1) 3 , i d e n t i c a l  

i n  all propert ies  except s o l u b i l i t y  i n  t h e  f u e l ,  resu l ted  i n  i d e n t i c a l  

burning r a t e s  between 300 - 1000 p s i  but  d i f f e red  above t h i s  pressure ( t h e  

soluble  addi t ive had t h e  higher burning rate at t h e  high pressures) .  Since 

t h i s  l igand  i t s e l f  has an e f f e c t  on the  burning r a t e  (lowering it i n  a 

s i m i l a r  manner as t h e  amines discussed below), t h e  e f f e c t  o f  s o l u b i l i t y  w a s  

re inves t iga ted  with a s e r i e s  of acetylacetonate  (AA)  chelates .  

of four insoluble t r a n s i t i o n  metal acetylacetonate  che la tes  (equal  mole percent )  , 
t he  effect iveness  of t h e  metals as burning r a t e  acce lera tors  at pressures  below 

1000 p s i  i s  Cu > Fe > Co 2 Mn, Figure 8. 

breaks down; however, copper i s  t h e  most e f f e c t i v e  m e t a l  over t h e  e n t i r e  

pressure range. Soluble copper and i ron  chelates  of  t h i s  same series gave 

e s s e n t i a l l y  t h e  same burning rates (over  t h e  e n t i r e  pressure range) as d id  t h e  

I n  a comparison 

A t  h igher  pressures ,  t h i s  order  
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inso luble  compounds. I n  t h e  combustion s i t u a t i o n ,  t h e  e f f e c t  o f  t h e  ca t a lys t  i n  

t h e  condensed phase must be a t  t h e  surface o f  t h e  oxidizer .  Since t h e  insoluble  

compounds tested m e l t  below t h e  def lagrat ion temperature of AP, it is  poss ib le  

t h a t  both t h e  melted inso luble  and the  binder  soluble  che la tes  had comparable 

contact  with t h e  oxid izer  i n  t h e  propel lant .  

A general izat ion t h a t  can be made i s  t h a t  f o r  a given amount of 

metal t h e r e  i s  a g rea t e r  e f f e c t  i f  the  metal i s  bound i n  some organo-metallic 

conrpound ( o r  che la te )  than  i f  it i s  present  as an ion ic  sa l t  o r  oxide. 

c a t a l y s t  a f f e c t s  t h e  proton t r ans fe r  equilibrium by removing one of t h e  

products thereby dr iv ing  t h e  react ion forward. It does t h i s  by a f f ec t ing  t h e  

heterogeneous decomposition o f  perchlor ic  acid.  There are several reasons 

why an organo-metallic compound would be expected t o  be more e f f e c t i v e  than 

an oxide i n  t h i s  react ion:  

t h e  oxide it would be i n  molecular s i z e  p a r t i c l e s  with f r e sh  sur faces ,  i . e . ,  

formed i n  s i t u ,  and ( 2 )  i f  t he  ca ta lys t  i s  t h e  o r i g i n a l  addi t ive  o r  a metal- 

organic product of an ear l ie r  in te rac t ion ,  a similar r e s u l t  would be expected 

as not only do metals promote HClO decomposition, H C 1 0 4  r e a c t s  exothermically 

with most organic substances. With an organo-metallic addi t ive  both processes 

could occur,  with t h e  p o s s i b i l i t y  of an o v e r a l l  addi t ive  e f f e c t  on t h e  r a t e  of  

decomposition o f  t he  H C 1 0 4 .  %e t w o  most e f f ec t ive  metals,  copper and i ron ,  

have two s t a b l e  oxidat ion s t a t e s  separated by a one e lec t ron  change. On t h e  

o the r  hand, while manganese has many oxidat ion states,  t h e  two most s t a b l e  

s ta tes  (+2 and +4)  are separated by two e lec t rons .  

The 

(1) i f  the organo-metallic f irst  decomposes t o  

4 

While cobal t  involves only 

25 
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a one e lec t ron  change between i t s  two oxidation s t a t e s ,  t h e  +3 s t a t e  i s  un- 

s t a b l e  due t o  the po ten t i a l  o f  t h i s  couple (% - 1 . 8 ~ ) .  

The work with t h e  e f f ec t  of bases on propel lan t  combustion i s  

preliminary. However, fu r the r  evidence f o r  t h e  decomposition o f  HC104 being 

one term i n  t h e  o v e r a l l  k ine t i c s  of combustion of an AP composite propel lan t  

comes from t h e  s t a b i l i z i n g  e f f e c t  derived from small amounts of  an added base. 

When propel lants  were formulated with 1% of a t e r t i a r y  amine ( t r i b u t y l  and 

. dimethyl dodecyl), t h e  r e su l t an t  propel lant  had a g rea t ly  reduced burning r a t e  

and pressure exponent. 

t h e  e f f e c t  i s  most l i k e l y  a surface e f f e c t ,  possibly t h e  neu t r a l i za t ion  of 

HC104. 

o f  HC104 and s t a b i l i z i n g  the  HC104 on t h e  c r y s t a l  surface.  

slope between the soluble  and insoluble  copper che la tes  with the  basic  

salicylaldehydeimine l igand may be explained due t o  t h e  d i f fe rence  i n  avai l -  

a b i l i t y  of  t h e  base  a t  t he  oxidizer  surface.  

soluble  che la te  w a s  not as ava i lab le  ( t i e d  up i n  t h e  b inder )  as t h a t  from 

t h e  insoluble  chelates and therefore  had less ( o r  no) e f f e c t  on the  burning 

rat e. 

Since the re  i s  only 1% of t h e  bas ic  amine f o r  75% AP, 

This would s t i l l  allow NH t o  desorb while both s lowing the  desorption 3 
The difference i n  

The bas ic  port ion of t h e  

The burning rate da ta  with t h e  propel lant  containing ammonium 

s u l f a t e  tends t o  corroborate some f inding which showed t h e  largest e f f e c t  

on t h e  burning r a t e  of AP propel lan ts  under an ammonia atmosphere ( 2 5 )  w a s  

at t h e  lower pressures. These data suggest a change i n  t h e  rate con t ro l l i ng  

mechanism w i t h  increasing heat f lux ( a  change t o  a mechanism t h a t  does not 

26 
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requi re  desorption of  NH ). 

composition , under an ammonia atmosphere, which occurs a t  temperatures over 

4 O O O C .  

e t c . )  using small p a r t i c l e  s i z e  AP. He pos tu la ted  f o r  a given set of 

conditions t h e  anomalous behavior i s  accentuated with increasing spread 

between t h e  f i e 1  and t h e  oxid izer  surface temperatures. 

which use a l a rge  p a r t i c l e  s i z e  d i s t r ibu t ion ,  t h e  p la teau  and negative slope 

come as a r e s u l t  o f  an increase i n  t h e  decomposition temperature of t he  

oxid izer  (and, therefore ,  decrease t h e  spread between f u e l  and oxid izer  

decomposition temperature). 

This same change is suggested by t h e  AP de- 
3 

Summerfield(26) has found some similar anomalous behavior (p l a t eaus ,  

I n  our experiments 
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CONCLUSIONS 

1. We believe t h a t  a subs t an t i a l  amount of evidence has been co l lec ted  which 

ind ica tes  t h a t  the condensed phase decomposition ( including sur face  r eac t ions )  

i s  a t  least one important t e r n  i n  the  rate determining s t e p  over p a r t  of t h e  

pressure range f o r  an uncatalyzed AP composite propel lan t  and over most (if 

not all) of the pressure range f o r  a catalyzed AP composite propel lan t .  

2. 

mechanism. "his decomposition, even when catalyzed by t h e  inclusion of  

K C l O  i n t o  t h e  AP l a t t i c e ,  does not acce lera te  the  burning r a t e  of an AP 

composite propellant over t h e  pressure range of 300-3000 p s i .  

3. The high temperature AP decomposition involves t h e  decomposition of 

H C 1 0 4 .  Deflagration r e s u l t s  only when t h e  AP i s  i n  t h e  cubic modification 

(NH4 and C104 ions a re  both f ree ly  r o t a t i n g ) ,  This H C 1 0 4  decomposition 

becomes appreciable i n  t h e  presence of addi t ives  (heterogeneous) above 

% 2 5 O o C  and without addi t ive (homogeneous) above %4OO0C. 

4. 

t r a n s i t i o n  metal ca t a lys t s .  They d i f f e r  only i n  the  r a t e  at which they catalyze 

t h e  react ion.  

5. Generally organo-metallics are  more e f f e c t i v e  c a t a l y s t s  than meta l l ic  

oxides o r  salts .  Metals having two s t a b l e  oxidation states separated by 

one e lec t ron  appear t o  be t h e  most e f f e c t i v e  ca t a lys t s .  I n  t h e  s e r i e s  of  

metals s tud ied  the c a t a l y t i c  e f fec t iveness  i s  as follows C u  > Fe > C o %  Mn. 

The low temperature AP decomposition proceeds by a proton t r a n s f e r  

3 

+ - 

The rate determining s t e p  remains t h e  same f o r  a l l  heterogeneously added 

28 
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6. There i s  no d i f fe rence  i n  ca t a ly t i c  e f fec t iveness  between a che la te  which 

i s  so luble  i n  t h e  binder and one which melts below t h e  temperature (Q32OoC) a t  

at which AP def lagra tes  during combustion. 

7. The e f f e c t  of t h e  heat re leased by a low temperature AP-additive reac t ion  

i s  t o  increase the  burning r a t e .  This e f f e c t  i s  g rea t e s t  at low pressures  

(low heat fluxes). 

8. 

pressures  while t h e  re ta rd ing  e f f ec t  o f  added bases i s  g r e a t e s t  a t  higher  

pressures .  

9. The e f f e c t  of pressure is  t o  reduce t h e  def lagra t ion  temperature of 

uncatalyzed AP from ~ 4 5 0 O C  t o  ~310OC. 

temperature of catalyzed AP at ambient pressure.  The temperature of  t h e  catalyzed 

system does not appreciably decrease with increasing pressure.  

10. 

mechanism and sublimation are competitive paths f o r  t h e  AP decomposition. 

Their  re la t ive contr ibut ions are a function of pressure,  heat f lux and ca t a lys t .  

The r e l a t i v e  contr ibut ion from t h e  high temperature decomposition increases  

with pressure and i n  t h e  presence of ca t a lys t s .  

11. 

fu tu re  experiments. 

The re ta rd ing  e f f e c t  o f  f r e e  NH on combustion i s  grea tes t  at low 3 

This i s  approximately t h e  def lagra t ion  

I n  an AP composite propellant t h e  high temperature decomposition 

A mechanism i s  offered f o r  co r re l a t ing  e x i s t i n g  da ta  and designing 



I .  

Report 1062-81~ 

Conclusions ( cont. ) 

HC104 ( a )  
NHqC104fNH3-----H-----C10 + 

11 
( D )  

- 
( A )  AP below 24OoC with a C l O 4  ion determined l a t t i c e  

( B )  

( C )  

( D )  NH and HC104 af ter  desorption 

AP above 240°C with both ions ro t a t ing  f r e e l y  

NH and HC104 absorbed on t h e  surface of t h e  AP 3 

3 
Low Pressure and Moderate Heat Fluxes: Under these  conditions the  

decomposition ra te  of  an uncatalyzed system i s  most l i k e l y  cont ro l led  by 

t h e  sublimation ( C ) + = ( D ) .  

ammonia atmosphere. If a c a t a l y s t  is  present ,  it promotes t h e  decomposition 

of  perchlor ic  acid a t  ( B )  o r  ( C )  on t h e  sur face  of  t h e  c rys t a l .  

purposes, ( B )  and (C) are not t o t a l l y  d i s t i n c t ,  t h a t  i s ,  it i s  not  c l e a r  a t  

It i s  t h i s  process t h a t  i s  re ta rded  by an 

For these  

what point  i n  the proton t r a n s f e r  t h e  hydrogen ion i s  c lose  enough t o  the  

perchlorate  ion t o  r e s u l t  i n  an e n t i t y  which can decompose as perchlor ic  acid.  

That t h e  decomposition involves perchlor ic  ac id  and not perchlora te  ion has 

been shown by the  s t a b i l i t y  of K C I O L  at these  temperatures i n  t h e  presence 

of addi t ives  and an ammonia atmosphere. The catalyzed pa th  involves t h e  

heterijgeneous decomposition of perchlor ic  ac id  at t h e  sur face  of t he  AP. 

When bases such as amines a re  added, they neu t r a l i ze  the  H C I O L  at t h e  surface ( C ) .  

30 
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In  t h e  uncatalyzed system, t h e  base does not  i n t e r f e r e  with t h e  desorption 

o f  ammonia but  does slow up t h e  desorption of t h e  H C l O  ( i n t e r f e r e s  with t h e  HC104 

p a r t  o f  t h e  (C).--(D) process) .  Although i n  t h e  catalyzed system t h e  decomposition 

4 

t akes  place without desorption, t h e  perchlor ic  ac id  would be more s t rongly  bound 

i n  a salt formation with t h e  added base than with NH 

s t ronge r  base than NH ). It i s  expected t h a t  t h i s  sa l t  formation would a f f e c t  

t h e  combustion rate of t h e  composite propel lant .  

( t h e  added base being a 3 

3 

High Heat Fluxes: A t  high heat f luxes,  t h e  decomposition of  both t h e  

catalyzed and uncatalyzed system would be occurring a t  ( B )  or ( C ) .  The 

catalyzed system would again be e s sen t i a l ly  cont ro l led  by t h e  heterogeneous 

decomposition of H C l O  while i n  the  uncatalyzed case the re  would be at  l eas t  

one pa th  involving t h e  homogeneous decomposition of  H C I O L  a t  t h e  surface.  

4’ 

Direct  evidence supporting the  catalyzed pa th  i s  found i n  t h e  work of 

Saunders and P e l l e t t  ( 2 3 )  who found the primary decomposition products of 

catalyzed AP decomposed’ by a laser t o  be NH 

H20. 

sur face  would account f o r  t h e  normal burning rates under an ammonia atmosphere a t  

high pressures  (hea t  f l ux ) ,  and t h e  decomposition o f  AP under ammonia a t  temp- 

e ra tu re s  above 4 O O O C .  

H C 1 ,  C102 , C10, H O C 1 ,  NO a n d  3’ 
I n  the  uncatalyzed system homogeneous decomposition o f  HC104 a t  t h e  

Those paths which involve perchlor ic  a c i d  decomposition at  t h e  surface 

might be expected t o  be sens i t i ve  t o  t h e  type  and quant i ty  o f  f’uel, s ince  

t h i s  path allows a poss ib le  in te rac t ion  between very r eac t ive  oxid izer  

decomposition products and t h e  f u e l  at  po in ts  of int imate  contact .  This may 

31 



Report 1062-81~ 

Conclusions (cont. 1 

28 
account f o r  t h e  effect  of f u e l  at high pressures  i n  uncatalyzed systems 

and t h e  r e l a t ive  changes i n  e f fec t iveness  of c a t a l y s t s  on changing t h e  

binder  system. 

The effect  of pressure (and t h e  r e l a t e d  heat  f l ux )  on t h e  combustion 

process i s  noticeable i n  a l l  of the  preceding work. 

of 0 - 3000 ps ia  t h e r e  appear t o  be t h r e e  pressure regions i n  which d i f f e r e n t  

mechanisms may be r a t e  control l ing.  These regions do not  have sharp boundaries 

but are from 0 - 300 ps i a ,  300 - 1000 p s i a ,  and above 1000 ps ia .  This break- 

down has been suggested previously by Powlinge8 but  not  necessar i ly  f o r  the  same 

reasons as those from t h e  cur ren t  program. The change at %lo00 - 1200 p s i  i s  

suggested by the  work with ammonia and bases as w e l l  as by t h e  increased e f f e c t  

o f  f u e l  on combustion r a t e s  i n  t h i s  pressure region. 

discussion of AP propel lant  combustion t h e  pressure range (and heat f l u x )  must 

be specif ied.  

Over t h e  pressure range 

Therefore, i n  a meaningful 

More work i s  needed t o  completely def ine t h e  mechanism of combustion 

of a composite AP-fie1 system (both catalyzed and uncatalyzed) over t h e  pressure 

range of  1 - 3000 ps i .  This w i l l  have t o  include a look a t  t h e  var iab les  of 

p a r t i c l e  s i z e  and fue l .  

t o  note t h a t  while considerable var ia t ions  e x i s t  between addi t ives  t he  m a x i m u m  

acce lera t ion  obtained with an additive i n  an AP composite propel lan t  i s  of  the  

order  of a fac tor  of  2 o r  2.5. If a l a rge  acce lera t ion  ( f a c t o r  o f  4 o r  5 )  i s  

desired,  we believe the re  is  s t rong  evidence t h a t  major modifications such as 

aux i l i a ry  oxidizers o r  reac t ive  addi t ives  ( i n  more than c a t a l y t i c  q u a n t i t i e s )  

I n  attempting t o  t a i l o r  burning rates it i s  i n t e r e s t i n g  
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Conclusions (cont . )  

w i l l  be needed. A second in t e re s t ing  poin t  i s  t h a t  it i s  poss ib le  t o  develop 

slow burning AP composite propel lants ;  however, t h i s  area i s  t o o  new t o  se t  

even approximate limits on a t  t h i s  t i m e .  
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